杨中磊, 朱慧, 周立彦, 赵文月, 黄卫. 2.5D微系统多物理场耦合仿真及优化[J]. 微电子学与计算机, 2022, 39(7): 121-128. DOI: 10.19304/J.ISSN1000-7180.2021.1092
引用本文: 杨中磊, 朱慧, 周立彦, 赵文月, 黄卫. 2.5D微系统多物理场耦合仿真及优化[J]. 微电子学与计算机, 2022, 39(7): 121-128. DOI: 10.19304/J.ISSN1000-7180.2021.1092
YANG Zhonglei, ZHU Hui, ZHOU Liyan, ZHAO Wenyue, HUANG Wei. 2.5D microsystem multiphysics coupling simulation and optimization[J]. Microelectronics & Computer, 2022, 39(7): 121-128. DOI: 10.19304/J.ISSN1000-7180.2021.1092
Citation: YANG Zhonglei, ZHU Hui, ZHOU Liyan, ZHAO Wenyue, HUANG Wei. 2.5D microsystem multiphysics coupling simulation and optimization[J]. Microelectronics & Computer, 2022, 39(7): 121-128. DOI: 10.19304/J.ISSN1000-7180.2021.1092

2.5D微系统多物理场耦合仿真及优化

2.5D microsystem multiphysics coupling simulation and optimization

  • 摘要: 微系统封装需要综合考虑电、热和力学性能的多物理场耦合问题.以某款2.5D微系统封装结构为研究对象,实测验证了2.5D微系统封装仿真模型准确性,完成了关键部件-TSV转接板(Through-Silicon-Via, TSV)的电-热-力多物理场耦合仿真分析.综合分析了TSV转接板的电性能、热性能和力学性能,仿真结果表明,初始TSV转接板结构电信号传输效率仅为73%、局部温度高达122.3℃以及受热发生的形变量为2.24um;由电-热耦合造成的结构形变使得电信号传输效率降低了6%.结合哈默斯雷实验设计方法、遗传算法等优化理论完成了TSV转接板结构的多物理场协同优化设计.仿真结果表明,优化后的TSV转接板插入损耗S21减小,电信号传输效率提高到80%,最高温度降低18%,最大形变减少19.6%.

     

    Abstract: Microsystem packaging needs to comprehensively consider the multiphysical coupling of electrical, thermal, and mechanical properties. Taking a 2.5D microsystem packaging structure as the research object, the accuracy of the 2.5D microsystem packaging simulation model was verified through actual testing, and then its key component-TSV interposer (Through-Silicon-Via, TSV) was electro-thermal -mechanics multiphysics coupling simulation analysis. Comprehensive analysis of the electrical, thermal and mechanical properties of the TSV interposer. The simulation results show that the electrical signal transmission efficiency of the initial TSV interposer structure is only 73%, the local temperature is as high as 122.3℃, and the deformation caused by heating is 2.24um. The structural deformation caused by the electrical-thermal coupling reduces the electrical signal transmission efficiency by 6%. Combined with Hammersley's experimental design method, genetic algorithm and other optimization theories, the TSV adapter plate structure is designed for multi-physics collaborative optimization. The results show that the optimized TSV interposer insertion loss S21 is reduced, the electrical signal transmission efficiency is increased to 80%, the maximum temperature is reduced by 18%, and the maximum deformation is reduced by 19.6%.

     

/

返回文章
返回