李婧宇, 汪荣贵, 杨娟, 薛丽霞, 董博文. 基于特征关系依赖网络的小样本学习方法[J]. 微电子学与计算机, 2022, 39(9): 11-19. DOI: 10.19304/J.ISSN1000-7180.2021.0177
引用本文: 李婧宇, 汪荣贵, 杨娟, 薛丽霞, 董博文. 基于特征关系依赖网络的小样本学习方法[J]. 微电子学与计算机, 2022, 39(9): 11-19. DOI: 10.19304/J.ISSN1000-7180.2021.0177
LI Jingyu, WANG Ronggui, YANG Juan, XUE Lixia, DONG Bowen. Feature relation dependent network for few-shot learning[J]. Microelectronics & Computer, 2022, 39(9): 11-19. DOI: 10.19304/J.ISSN1000-7180.2021.0177
Citation: LI Jingyu, WANG Ronggui, YANG Juan, XUE Lixia, DONG Bowen. Feature relation dependent network for few-shot learning[J]. Microelectronics & Computer, 2022, 39(9): 11-19. DOI: 10.19304/J.ISSN1000-7180.2021.0177

基于特征关系依赖网络的小样本学习方法

Feature relation dependent network for few-shot learning

  • 摘要: 小样本学习任务旨在仅提供少量训练样本的情况下完成对测试样本的正确分类.基于度量学习的小样本学习方法通过将样本映射到嵌入空间中,计算样本间距离得到相似性度量以预测类别,但仅对样本特征进行独立映射,而忽略了对整个任务的观察,同时在小样本场景下通过传统方法计算的原型与期望原型存在偏差,导致在查询集上泛化性较低.针对上述问题,提出了特征关系依赖网络(FRDN).特征关系依赖网络包含两个模块:首先使用关系挖掘模块充分挖掘任务中样本的类内与类间关系,将其作为自注意力值对类簇进行调整,以获得判别性更高的任务自适应嵌入空间,计算初始原型;随后使用偏差抑制模块对初始原型进行校正,得到在查询集上泛化性更高的优化原型,进一步提高模型的分类准确率.在MiniImagenet数据集上,该方法1-shot分类准确率59.17%,5-shot准确率74.11%,分别超过传统度量学习方法6.13%与2.83%;在CUB数据集上分别提升9.3%和2.74%.

     

    Abstract: Few-shot learning aims to build a classifier that recognizes new unseen classes given only a few samples. Existing traditional metric learning methods map the samples to the shared embedding space, and calculate the feature similarity in this space for classification, but only map the features of samples independently while neglecting to observe the whole task. At the same time, the basic prototypes computed in the low-data regime are biased against the expected prototypes, resulting in low generalization on the query set. In view of the above problems, a feature relation dependent network is proposed (FRDN). The feature relation dependent network consists of two modules: Firstly, the relation mining module can fully mine the intra-class and inter-class relations in the task, use it as the self-attention values to adjust the class clusters to obtain a more discriminative task-adaptive embedding spaceand calculate basic prototypes; Then, the bias diminishing module is used to correct the initial prototype to obtain an optimized prototype with higher generalization on the query set, further improve the classification accuracy. On the MiniImagenet dataset, the 1-shot accuracy of the method is 59.17%, and the 5-shot accuracy is74.11%, which are 6.13% and 2.83% higher than that of the traditional metric learning method; on the CUB dataset, increases of 9.3% and 2.74% are reached respectively.

     

/

返回文章
返回