王诗兆,何涛,田志强,等.微系统封装材料的时间相关特性[J]. 微电子学与计算机,2024,41(1):26-36. doi: 10.19304/J.ISSN1000-7180.2023.0772
引用本文: 王诗兆,何涛,田志强,等.微系统封装材料的时间相关特性[J]. 微电子学与计算机,2024,41(1):26-36. doi: 10.19304/J.ISSN1000-7180.2023.0772
WANG S Z,HE T,TIAN Z Q,et al. Time-dependent characteristics of microsystem packaging materials[J]. Microelectronics & Computer,2024,41(1):26-36. doi: 10.19304/J.ISSN1000-7180.2023.0772
Citation: WANG S Z,HE T,TIAN Z Q,et al. Time-dependent characteristics of microsystem packaging materials[J]. Microelectronics & Computer,2024,41(1):26-36. doi: 10.19304/J.ISSN1000-7180.2023.0772

微系统封装材料的时间相关特性

Time-dependent characteristics of microsystem packaging materials

  • 摘要: 在下一代微系统集成技术中,微系统封装复杂度不断增加,高集成、多功能使得薄膜厚度持续降低带来材料及工艺的改变,随之而来的是结构可靠性与信号完整性(结构设计及优化、多场多尺度耦合、热管理、电磁兼容)等诸多问题。这些问题给微系统封装架构的设计、优化带来极大的不确定性。在新架构、新工艺的开发中,工艺及可靠性仿真的应用大大降低了开发成本和周期,材料和器件架构的仿真模拟成为加速技术开发的关键,它们有助于通过数据建模实现对设计过程中参数的调整(即了解器件架构和材料对工艺改进的影响)和材料/架构协同设计(材料筛选、结构设计、性能优化)。 随着微系统集成度的提高,材料到架构系统的协同仿真优化将会成为由新材料、新工艺支撑的新器件开发不可或缺甚至是最为重要的一环。 微系统封装工艺及可靠性仿真结果的准确性在很大程度上取决于材料模型输入。 为了准确预测微系统封装工艺及可靠性的行为,了解材料本构关系是至关重要的过程。 事实上,微系统封装中大多有机/无机封装材料具有显著的时间相关性,但实际建模中时间相关性材料特性经常被忽视,有机/无机封装材料时间相关性行为的影响尚未得到广泛的重视和系统的研究。

     

    Abstract: In the next generation of Small Form Factor (SFF) microsystem technologies, the complexity of microsystem packaging is on the rise. The pursuit of high integration and multifunctionality has led to a continuous reduction in film thickness, and necessitated adjustments in materials and processes, which, in turn, have given rise to concerns related to structural reliability and signal integrity (structural design and optimization, multi-physical and multi-scale coupling, thermal management, and electromagnetic compatibility). This array of challenges introduces substantial uncertainties in designing and optimizing microsystem packaging architectures. To navigate these complexities, the application of process and reliability models has proven instrumental in curtailing development costs and timelines. Central to this methodology is the simulation of materials and device architectures, which plays a pivotal role in expediting technological advancements. Material and architecture simulations facilitate the iterative adjustment of design parameters through data modeling, specifically by comprehending the impact of device architecture and materials on process enhancement. Additionally, they enable material/architecture co-design encompassing material selection, structural design, and performance optimization. As microsystem integration continues to advance, the co-simulation optimization of materials within architectural systems is poised to become an indispensable, if not the paramount, facet of developing new devices rooted in innovative materials and processes. The precision of simulation results for the microsystem packaging process and reliability depends largely on the input of material models. Therefore, an essential prerequisite for the precise forecasting of microsystem packaging process behavior and reliability lies in a comprehensive grasp of the material constitutive relations. Most of the organic/inorganic packaging materials in microsystem packaging have significant time dependence, but the time-dependent is often ignored in practical modeling, and the influence of time-dependent behavior has not been widely concerned and systematically studied.

     

/

返回文章
返回