朱迪, 张钊锋. 一种宽带毫米波注入锁定分频器电路的设计方法[J]. 微电子学与计算机, 2021, 38(10): 97-102,108. DOI: 10.19304/J.ISSN1000-7180.2021.0060
引用本文: 朱迪, 张钊锋. 一种宽带毫米波注入锁定分频器电路的设计方法[J]. 微电子学与计算机, 2021, 38(10): 97-102,108. DOI: 10.19304/J.ISSN1000-7180.2021.0060
ZHU Di, ZHANG Zhaofeng. A design technology of a wideband mm-wave injection-locked frequency divider[J]. Microelectronics & Computer, 2021, 38(10): 97-102,108. DOI: 10.19304/J.ISSN1000-7180.2021.0060
Citation: ZHU Di, ZHANG Zhaofeng. A design technology of a wideband mm-wave injection-locked frequency divider[J]. Microelectronics & Computer, 2021, 38(10): 97-102,108. DOI: 10.19304/J.ISSN1000-7180.2021.0060

一种宽带毫米波注入锁定分频器电路的设计方法

A design technology of a wideband mm-wave injection-locked frequency divider

  • 摘要: 提出了一种宽带毫米波注入锁定分频器电路(ILFD)的设计方法,并基于40 nm CMOS工艺设计了一款验证电路.为了解决传统毫米波ILFD锁定范围有限的难题,采用基于变压器的高阶谐振腔技术产生相位的纹波响应,从而有效地拓展了锁定范围;为了降低毫米波振荡器电路中交叉耦合对的栅寄生电容对于谐振频率的影响,同时确保高阶谐振腔产生的相位纹波形态不变,提出了一种感性分割反馈技术,通过压缩差分对的栅寄生电容对谐振网络总电容的贡献,实现了谐振频率增强;基于修正后的LC型注入锁定分频器模型,推导了锁定条件和锁定范围.绘制电路版图并后仿,结果表明,在0.8 V电源电压下实现了52.6~76.4 GHz(36.9%)的锁定范围; 在电源电压0.62 V下,实现了50~79.1 GHz(45.1%)的锁定范围,功耗为2.9 mW,FoM值为10.0 GHz/mW.

     

    Abstract: A design technology of the wideband mm-wave injection-locked frequency divider (ILFD) is proposed and based on the 40-nm CMOS technology, a relating chip is designed for verification. In order to solve the problem of the narrow locking range (LR) in conventional mm-wave ILFDs, the transformer-based high-order resonator is utilized to generate the rippled phase response, enlarging the LR efficiently; Additionally, for the propose of reducing the equivalent parasitic capacitance from the gate of differential pairs in mm-wave band, an inductive divider feedback technology is proposed, realizing the boost of oscillation frequency. Besides, the injection-locked conditions of phase and gain for a modified model are theoretically deduced and the enhancement of oscillation frequency is analyzed and verified by simulations. The layout is drawn and the parasitic parameters are extracted to acquire the post-simulation results which suggest a LR of 36.9% from 52.6~76.4 GHz under 0.8 V power supply while a LR of 45.1% from 50~79.1 GHz, consuming 2.9 mW achieving an FoM of 10.0 GHz/mW under 0.62 V supply voltage.

     

/

返回文章
返回