A Screening method for single particle fault injection experimental set for SRAM-FPGA
-
摘要:
针对目前单粒子故障注入实验中存在的故障注入位置盲目导致的效率低下、耗费大量的时间人力成本从而难以在工程项目中推广的问题, 提出一种SRAM型FPGA故障注入实验集的筛选方法用来指导单粒子故障注入.该方法剖析SRAM型FPGA芯片结构, 归纳单粒子故障的时间特性, 确定单粒子故障模式; 并结合具体FPGA设计的资源占用情况、资源特性、资源连接关系等给出故障注入实验集的筛选和优先级排序方法; 搭建单粒子故障注入原型系统对所提方法进行了工程验证.结果表明提出的单粒子故障注入实验集的筛选和优先级排序方法正确、有效, 能快速定位出设计中与功能密切相关的配置位, 缩短故障注入的时间成本, 使得故障注入方法广泛应用于实际工程成为可能.
Abstract:In view of the inefficiency caused by the blind fault injection in the traditional single-particle fault injection experiment, which consumes a lot of time and manpower and is difficult to apply in practical engineering projects. This paper proposes a screening methodology for SRAM-based FPGA fault injection experiment set to guide single-particle fault injection. This methodology analyzes the SRAM FPGA chip structure, summarizes the time characteristics of single-particle faults, and determines single particle failure mode. The method of screening and prioritizing the fault injection experiment set is given in combination with the resource occupation, resource characteristics, and resource connection relationship of the specific FPGA design. A single-particle fault injection prototype system is constructed to verify the proposed method. The results show that the proposed method is correct and effective, which can quickly locate the function-related configuration bits in the design, shorten the time cost of fault injection, and make the fault injection method widely applicable to practical engineering.
-
表 1 典型单粒子效应对FPGA器件的影响
类型 影响 单粒子翻转 存储单元逻辑状态的翻转, 包括Flip-Flop、Block RAM、查找表、配置存储器 单粒子多位翻转 一个粒子入射导致存储单元多个位逻辑状态的改变, 包括Flip-Flop、Block RAM、查找表、配置存储器 单粒子瞬态脉冲 单个高能粒子导致瞬态电流在逻辑电路中传播, 产生瞬时脉冲, 包括查找表、时钟管理单元、可编程互联资源、IOB 单粒子扰动 存储单元逻辑状态出现瞬时改变, 包括Flip-Flop、Block RAM、配置存储器 表 2 典型单粒子效应对FPGA器件的影响
瞬态故障
(在下一个或几个时钟周期消除)持续故障
(按照设定的时间特性注入故障)永久故障
(在一次故障注入实
验中不进行故障恢复)SRAM型
FPGA
单元CLB中的
SLICE查找表 √(单粒子瞬态脉冲) √(单粒子翻转、单粒
子多位翻转)√(单粒子翻转、单粒
子多位翻转)多路复用逻辑 / / √(单粒子翻转、单粒
子多位翻转)Flip-Flop √(单粒子翻转、单粒子
多位翻转、单粒子扰动)√(单粒子翻转、单粒子
多位翻转)√(单粒子翻转、单粒
子多位翻转)专用高速
进位逻辑√(单粒子翻转、单粒
子多位翻转)可编程互联资源 √(单粒子瞬态脉冲) / IOB √(单粒子瞬态脉冲) / 配置
存储器查找表配置位 √(单粒子扰动) √(单粒子翻转、单粒
子多位翻转)√(单粒子翻转、单粒
子多位翻转)时钟配置位 √(单粒子扰动) √(单粒子翻转、单粒
子多位翻转)√(单粒子翻转、单粒
子多位翻转)开关矩阵和可
编程互联点√(单粒子扰动) √(单粒子翻转、单粒
子多位翻转)√(单粒子翻转、单粒
子多位翻转)寄存器配置位 √(单粒子扰动) √(单粒子翻转、单粒
子多位翻转)√(单粒子翻转、单粒
子多位翻转)多路复用
逻辑控制位√(单粒子扰动) √(单粒子翻转、单粒
子多位翻转)√(单粒子翻转、单粒
子多位翻转)IOB配置位 √(单粒子扰动) √(单粒子翻转、单粒
子多位翻转)√(单粒子翻转、单粒
子多位翻转)存储器 Block Ram √(单粒子翻转、单粒
子扰动)√(单粒子翻转、单粒
子多位翻转)√(单粒子翻转、单粒
子多位翻转)时钟资源 时钟管理单元 √(单粒子瞬态脉冲) / / -
[1] HARBOE S R. 40 years of radiation single event effects at the European space agency, ESTEC[J]. IEEE Transactions on Nuclear Science, 2013, 60(3): 1816-1823. DOI: 10.1109/TNS.2013.2247630. [2] 张森, 石军, 王九龙.卫星在轨失效统计分析[J].航天器工程, 2010, 19(4): 41-46. DOI: 10.3969/j.issn.1673-8748.2010.04.007.ZHANG S, SHI J, WANG J L. Satellite on-board failure statistics and analysis[J]. Spacecraft Engineering, 2010, 19(4): 41-46. DOI: 10.3969/j.issn.1673-8748.2010.04.007. [3] 何益百.辐射效应地面试验技术研究[D].长沙: 国防科学技术大学, 2010.HE Y B. Research on radiation effects ground-based testing technology[D]. Changsha: National University of Defense Technology, 2010. [4] 马英起, 封国强, 上官士鹏, 等.脉冲激光试验评估模拟电路单粒子效应[J].信息与电子工程, 2012, 10(5): 633-638. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201205025.htmMA Y Q, FENG G Q, SHANGGUAN S P, et al. Pulsed laser test of single event effects in analog circuits[J]. Information and Electronic Engineering, 2012, 10(5): 633-638. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201205025.htm [5] 余永涛.脉冲激光模拟SRAM单粒子效应的试验研究[D].北京: 中国科学院研究生院, 空间科学与应用研究中心, 2015.YU Y T. Research of SRAM single event effects based on pulsed laser testing[D]. Beijing: Graduate School of Chinese Academy of Sciences, Center for Space Science and Application Research, 2015. [6] ZUZARTE M. A tool for run time soft error fault injection into FPGA circuits[D]. Hamilton: McMaster University, 2014. [7] KRETZSCHMA U, ASTARLOA A, JIMéNEZ J, et al. Compact and fast fault injection system for robustness measurements on SRAM-Based FPGAs[J]. IEEE Transactions on Industrial Electronics, 2014, 61(5): 2493-2503. DOI: 10.1109/TIE.2013.2273476. [8] QUINN H, WIRTHLIN M. Validation techniques for fault emulation of SRAM-based FPGAs[J]. IEEE Transactions on Nuclear Science, 2015, 62(4): 1487-1500. DOI: 10.1109/TNS.2015.2456101. [9] ZHANG R S, XIAO L Y, LI J, et al. A fast fault injection platform of multiple SEUs for SRAM-based FPGAs[J]. Microelectronics Reliability, 2018, 82: 147-152. DOI: 10.1016/j.microrel.2018.01.014. [10] 李鹏.纳米级SRAM单粒子翻转效应及其诱导的软错误研究[D].长沙: 国防科学技术大学, 2016.LI P. Research on single event upset and its induced soft error of Nano SRAMs[D]. Changsha: National University of Defense Technology, 2016. -